
Copyright©2013,kaikeba.com

All Rights Reserved

——指针泛化与多态

主讲教师：耿宇航

编程入门基础

泛化

Copyright©2013,kaikeba.com, All Rights Reserved

• 泛化就是抽象化

– 把具体的东西抽象地看待

– 把 “猫” 看为 “动物”

– 把 “苹果” 看待为 “水果”

• 泛化也叫向上塑型，是通往多态的路口

指针的泛化

Copyright©2013,kaikeba.com, All Rights Reserved

• 泛化是指针（引用）的泛化

• 并不是“对象”的泛化

• 并不是“类”的泛化

class 水果

{

…

}

class 苹果 extends 水果

{

…

}

水果 x;

x = new 苹果();

// x 的身份是指针

// 赋值动作不会引起对象的变化

// 赋值动作当然也不会改变那两个类

泛化的动作

Copyright©2013,kaikeba.com, All Rights Reserved

• 除了像其它语句一样的赋值动作，泛化并不会在内存
中作出什么特殊的处理来。它仅仅是让编译器把一种
变量的类型当成是另一种类型来处理。

• 这么做，可以把许多本来不同的类型一视同仁地对待

• 这么做既是可行的，也是合理的。

把子类对象看作父类对象

Copyright©2013,kaikeba.com, All Rights Reserved

• 这样可行吗？

– 可行，我们自愿放弃了更丰富的信息

• 这样有用吗？

– 有用，我们可以用同样的类型处理不同的东西。为了发现共
性

泛化的对立面

Copyright©2013,kaikeba.com, All Rights Reserved

• 泛 = 广泛，宽泛

• 泛化的对立面就是“特化”或者“具体化”

• 已知 a 是猫，我们也可以说 a 是动物

• 如果已知 a 是动物，我们不能断定 a 一定是猫

• 动物 a = new 猫();

• 猫 b = a;

• 虽然客观上上面的操作无可厚非，但实际编译不通！
因为第二句话是“特化”，编译器不能任之。

指针与它指向对象的类型

Copyright©2013,kaikeba.com, All Rights Reserved

• 指针的类型与它指向的对象的类型可以不同

• 指针的类型可以更“宽泛”，这样就放弃了对象的独
特动作，只做一般的操作。

• 如何知道指针所指向对象的真实类型？

– 用 instanceof 测试

– 用 反射 机制

instanceof

Copyright©2013,kaikeba.com, All Rights Reserved

• 这不是一个方法

• 这是一个java关键字，如同 while, if 等

• 用法： 指针 instanceof 类型 返回一个boolean

• if(a instanceof 猫) ….

• if(a instanceof Object) …

对象的类型

Copyright©2013,kaikeba.com, All Rights Reserved

• 对象总是具体的类创建的，因而有一个真实类型

• 操作对象的时候总是要通过一个指针，指针的类型有
可能与对象的真实类型不同，叫做：表面类型

• 表面类型 = 编译类型，语法类型，形式类型，…

• 真实类型 = 运行时类型，实质类型，实际类型，…

怎样的现象叫多态？

Copyright©2013,kaikeba.com, All Rights Reserved

• 通过父类的引用能调用子类中的方法

• 在程序运行前(编译时)，无法确定调用哪个方法的现
象

动物 a;

if(Math.random() > 0.5)

 a = new 猫();

else

 a = new 狗();

a.eat(); // 编译时的迷茫….

多态带来了什么好处？

Copyright©2013,kaikeba.com, All Rights Reserved

• 可以对多种有共性的事物统一（不是分别）地处理

• 站在更高的层次管理对象的行为

• 软件的所谓蓝图化设计

另一个角度找多态

Copyright©2013,kaikeba.com, All Rights Reserved

• 过去写好的代码未经修改，可以调用到刚刚写好的代
码！

class 猫

{

public String toString()

{

 return “I am Cat!”;

}

}

猫 a = new 猫();

System.out.println(a);

println 是很早的代码，从未修改。

但它却调用了新写的 toString()方
法。

覆盖是纽带

Copyright©2013,kaikeba.com, All Rights Reserved

 public void println(Object x)

{

 println(x.toString());

}

猫 a = new 猫();

System.out.println(a);

class 猫

{

public String toString()

{

 return “I am Cat!”;

}

}

class Object

{

…

public String toString()

…

}

出现泛化

编译时瞄
准

运行时寻找到

多态的应用

Copyright©2013,kaikeba.com, All Rights Reserved

• 对象间的比较问题

– 直接对对象变量去比较，比较的是对象的存储地址。

– 要比较对象的内容是否相同，可以使用对象提供的方法来完
成

Copyright©2013,kaikeba.com, All Rights Reserved

谢 谢 !

